Project 1:Matched filtering of Linear Frequency Modulated (LFM) signal 线性调频信号的匹配滤波

FFT function

fig01

Parameters:

  1. sampling time: TT
  2. sampling rate: fsf_s
  3. $total\ dots: N = T \times f $
  4. frequency index: f=fsN\triangle f = \frac{f_s}{N}
  5. original index: NN (same as 3.)

fig01
fig03

Generating Original Waves

s(t)=rect(t10×106)ej2π(2×1012t2)s(t) = rect(\frac{t}{10 \times 10^{-6}})e^{j2 \pi (2 \times 10^{12} t^2)}

According to the Euler’s formula, we can get:

s(t)=rect(t10×106)(cos(2π(2×1012t2))+jsin(2π(2×1012t2)))s(t) = rect(\frac{t}{10 \times 10^{-6}})(cos(2 \pi (2 \times 10^{12} t^2)) + jsin(2 \pi (2 \times 10^{12} t^2)))

The real part of the signal is:

s(t)=rect(t10×106)cos(2π(2×1012t2))s(t) = rect(\frac{t}{10 \times 10^{-6}})cos(2 \pi (2 \times 10^{12} t^2))

The imaginary part of the signal is:

s(t)=rect(t10×106)sin(2π(2×1012t2))s(t) = rect(\frac{t}{10 \times 10^{-6}})sin(2 \pi (2 \times 10^{12} t^2))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
T=10e-6;                                       
B=40e6;
K=B/T;
Fs=2*B;Ts=1/Fs;
N=T/Ts;
t=linspace(-T/2,T/2,N);
St=exp(1i*pi*K*t.^2);
figure(1)
subplot(311)
plot(t*1e6,real(St));
xlabel('time/us');
title('waveform of LFM signal real part');
grid on;axis tight;
subplot(312)
plot(t*1e6,imag(St));
xlabel('time/us');
title('waveform of LFM signal imaginiary part');
grid on;axis tight;
subplot(313)
freq=linspace(-Fs/2,Fs/2,N);
plot(freq*1e-6,fftshift(abs(fft(St))));
xlabel('f/MHz');
title('corresponding amplitude spectrum');
grid on;axis tight;

Matched filtering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
St_wgn = awgn(St,10);%%叠加高斯白噪声,SNR= 10
Ht = conj(fliplr(St));%%发射信号时间反褶后取共轭得到h(t)

yt = conv(St_wgn, Ht) ;%%时域信号
yf = Sf.*Hf ;%%频域信号
t_0=linspace(-T/2,T/2,2*N-1);
freq=linspace(-Fs/2,Fs/2,2*N-1);
figure(2)
subplot(311)
plot(t_0*1e6,real(yt));
xlabel('time/us');
title('real part of output signal');
grid on;axis tight;
subplot(312)
plot(t_0*1e6,imag(yt));
xlabel('time/us');
title('imaginary part of output signal');
grid on;axis tight;
subplot(313)
plot(freq*1e-6,fftshift(abs(fft(yt))));
xlabel('f/MHz');
title('corresponding amplitude spectrum of output signal');
grid on;axis tight;

Principle Analysis

考虑观测信号:$$y(t)=s(t)+n(t)$$

s(t)s(t)为已知信号,n(t)n(t)为零均值的加性平稳噪声(白色或有色)

  • 白噪声(white noise)是指功率谱密度在整个频域内是常数的噪声。 所有频率具有相同能量密度的随机噪声称为白噪声。

  • 有色噪声( coloured noise)是指功率谱密度函数不平坦的噪声。大多数的噪声的频谱主要都是非白色频谱,通过信道的白噪声受信道频率的影响而变为有色的。

h(t)h(t)为滤波器的时不变冲激响应函数,目标就是设计滤波器h(t)h(t),使得滤波器的输出信号y(t)y(t)的信噪比最大化。
滤波器的输出信号为:

y0(t)=y(t)h(t)=y0(τ)h(tτ)dτ=s(τ)h(tτ)dτ+n(τ)h(tτ)dτ=s0(t)+n0(t)\begin{align} y_0(t) & =y(t)*h(t) \\ & = \int_{-\infty}^{\infty} y_0(\tau)h(t-\tau)d\tau \\ & = \int_{-\infty}^{\infty} s(\tau)h(t-\tau)d\tau + \int_{-\infty}^{\infty} n(\tau)h(t-\tau)d\tau \\ & = s_0(t) + n_0(t) \end{align}

so(t)s_o(t)no(t)n_o(t)分别为滤波器的输出信号分量和噪声信号分量。

t=T0t=T_0时刻,滤波器的输出信噪比定义为

\begin{align} (\frac{S}{N})^2 & = \frac{\textbf{t=T_0时刻输出的瞬时信号功率}}{\textbf{输出噪声的平均功率}} \\ & = \frac{s_0^2(T_0)}{E[n_0^2(t)]} \end{align}

利用傅里叶变换的卷积特性,有

s0(t)=s(τ)h(tτ)dτ=12πH(jω)S(jω)ejωtdω\begin{align} s_0(t) = \int_{-\infty}^{\infty} s(\tau)h(t-\tau)d\tau & = \frac{1}{2\pi}\int_{-\infty}^{\infty} H(j\omega)S(j\omega)e^{j\omega t}d\omega \end{align}

式中,H(jω)H(j\omega) = h(t)ejωtdt\int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt为滤波器的频率响应函数(传递函数),S(jω)S(j\omega) = s(t)ejωtdt\int_{-\infty}^{\infty} s(t)e^{-j\omega t}dt为信号的频谱密度函数。

t=T0t=T_0时刻,输出信号的瞬时功率为

s02(T0)=12πH(jω)S(jω)ejωT0dω2\begin{align} s_0^2(T_0) & = |\frac{1}{2\pi}\int_{-\infty}^{\infty} H(j\omega)S(j\omega)e^{j\omega T_0}d\omega |^2 \\ \end{align}

t=T0t=T_0时刻,输出噪声的平均功率为

En02(t)=E{n(τ)h(tτ)dτ}2\begin{align} E{n_0^2(t)} = E\{\int_{-\infty}^{\infty} n(\tau)h(t-\tau)d\tau\}^2 \end{align}


补一些功率谱密度的知识
若某一个功率信号x(t)x(t)的功率为px(t)p_x(t),则有

px(t)=limT12TxT(t)2\begin{align} p_x(t) = \lim_{T\rightarrow\infin}\frac{1}{2T}|x_T(t)|^2 \end{align}

其功率谱密度函数Px(jω)P_{x}(j\omega)

Px(jω)=limT12TXT(jω)2\begin{align} P_{x}(j\omega)=\lim_{T\rightarrow\infin}\frac{1}{2T}|X_T(j\omega)|^2 \end{align}

若以f为自变量,则可以写成

Px(f)=limT12TXT(f)2\begin{align} P_{x}(f)=\lim_{T\rightarrow\infin}\frac{1}{2T}|X_T(f)|^2 \end{align}

(其中XT(jω)X_T(j\omega)xT(t)x_T(t)的傅里叶变换, xT(t)x_T(t)x(t)x(t)[T,T][-T,T]上的截断信号)
根据Parseval定理

xT(t)2dt=12πXT(jω)2dω=XT(f)2df\begin{align} \int_{-\infty}^{\infty} |x_T(t)|^2dt & = \frac{1}{2\pi}\int_{-\infty}^{\infty} |X_T(j\omega)|^2 d\omega \\ & = \int_{-\infty}^{\infty} |X_T(f)|^2 df \end{align}

总功率为:

P=limT12TxT(t)2dt=limT12TXT(f)2df=P(f)df\begin{align} P = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-\infty}^{\infty} |x_T(t)|^2dt & = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-\infty}^{\infty} |X_T(f)|^2 df & = \int_{-\infty}^{\infty}P(f)df \end{align}


Pn(jω)P_n(j\omega)为加性噪声的功率谱密度函数,则输出噪声的功率谱密度函数为

Pn0(jω)=H(jω)2Pn(jω)\begin{align} P_{n_0}(j\omega) = |H(j\omega)|^2 P_n(j\omega) \end{align}

输出噪声的平均功率可以写作(以频率作为量度)

E[n02(t)]=12πPn0(jω)dω=12πH(jω)2Pn(jω)\begin{align} E[n_0^2(t)] = \frac{1}{2\pi}\int_{-\infty}^{\infty}P_{n_0}(j\omega)d\omega = \frac{1}{2\pi}\int_{-\infty}^{\infty}|H(j\omega)|^2 P_n(j\omega) \end{align}

代入信噪比定义式,可以得出

(SN)2=s02(T0)E[n02(t)]=12πH(jω)S(jω)ejωT0dω212πH(jω)2Pn(jω)=12π(H(jω)Pn(jω))(S(jω)Pn(jω))ejωT0dω2H(jω)2Pn(jω)\begin{align} (\frac{S}{N})^2 = \frac{s_0^2(T_0)}{E[n_0^2(t)]} & = \frac{|\frac{1}{2\pi}\int_{-\infty}^{\infty} H(j\omega)S(j\omega)e^{j\omega T_0}d\omega |^2}{\frac{1}{2\pi}\int_{-\infty}^{\infty}|H(j\omega)|^2 P_n(j\omega)} \\ & = \frac{1}{2\pi}\frac{|\int_{-\infty}^{\infty}(H(j\omega)\sqrt{P_n(j\omega)})(\frac{S(j\omega)}{\sqrt{P_n(j\omega)}})e^{j\omega T_0}d\omega|^2}{\int_{-\infty}^{\infty}|H(j\omega)|^2 P_n(j\omega)} \end{align}

分子凑了一个Pn(jω)\sqrt{P_n(j\omega)}, 因为要用到Cauchy-Schwartz不等式:

abf(x)g(x) dxabf2(x) dxabg2(x) dx\begin{align} \left|\int_{a}^{b} f(x)g(x)\ dx\right| \leq \sqrt{\int_{a}^{b} f^2(x)\ dx}\sqrt{\int_{a}^{b} g^2(x)\ dx} \end{align}

等号在当且仅当f(x)=cg(x)f(x)=cg^*(x), c是任意复常数时成立。取c = 1:

f(x)=H(jω)Pn(jω)g(x)=S(jω)Pn(jω)ejωT0\begin{align} f(x) = H(j\omega)\sqrt{P_n(j\omega)}, g(x)=\frac{S(j\omega)}{\sqrt{P_n(j\omega)}}e^{j\omega T_0} \end{align}

(SN)212πH(jω)2Pn(jω)dω(S(jω)2Pn(jω))ejωT0dωH(jω)2Pn(jω)dω=12πH(jω)2Pn(jω)dω(S(jω)2Pn(jω))dωH(jω)2Pn(jω)dω=12πS(jω)2Pn(jω)dω\begin{align} (\frac{S}{N})^2 & \le \frac{1}{2\pi}\frac{\int_{-\infty}^{\infty}|H(j\omega)|^2P_n(j\omega)d\omega\int_{-\infty}^{\infty}(\frac{|S(j\omega)|^2}{P_n(j\omega)})e^{j\omega T_0}d\omega}{\int_{-\infty}^{\infty}|H(j\omega)|^2 P_n(j\omega)d\omega} \\ & = \frac{1}{2\pi}\frac{\int_{-\infty}^{\infty}|H(j\omega)|^2P_n(j\omega)d\omega\int_{-\infty}^{\infty}(\frac{|S(j\omega)|^2}{P_n(j\omega)})d\omega}{\int_{-\infty}^{\infty}|H(j\omega)|^2 P_n(j\omega)d\omega} \\ & = \frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{|S(j\omega)|^2}{P_n(j\omega)}d\omega \end{align}

eixe^{ix}的模总是1, 因此平方也是1,复指数乘积项就没了

取最大值,即为等式成立条件。将式中等号成立时的滤波器传递函数记作Hopt(jω)H_{opt}(j\omega), 利用Cauchy-Schwartz不等式等号成立条件:

Hopt(jω)Pn(jω)=S(jω)Pn(jω)ejωT0(c=1)Hopt(jω)=S(jω)Pn(jω)ejωT0\begin{align} H_{opt}(j\omega)\sqrt{P_n(j\omega)}&=\frac{S^*(j\omega)}{\sqrt{P_n^*(j\omega)}}e^{-j\omega T_0}\\(c &= 1)\\ H_{opt}(j\omega)&=\frac{S^*(j\omega)}{P_n(j\omega)}e^{-j\omega T_0} \end{align}

可以得到最大信噪比:

SNRmax=12πS(jω)2Pn(jω)dω\begin{align} SNR_{max} = \frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{|S^*(j\omega)|^2}{P_n(j\omega)}d\omega \end{align}

由此,最优线性滤波器理论推导完成。

由题意得其功率谱也恒定为 2N\frac{2}{N} .代入 Hopt(jω)H_{opt}(j\omega) 中得到:

Hopt(jω)=S(jω)2NejωT0=NS(jω)2ejωT0\begin{align} H_{opt}(j\omega) = \frac{S^*(j\omega)}{\frac{2}{N}}e^{-j\omega T_0} = \frac{NS^*(j\omega)}{2}e^{-j\omega T_0} \end{align}

对其进行反变换,得到最优线性滤波器的时域表达式:

hopt(t)=N2s(tT0)\begin{align} h_{opt}(t) = \frac{N}{2}s^*(-t-T_0) \end{align}

T0=0T_0 = 0时,最优线性滤波器为:

hopt(t)=N2s(t)\begin{align} h_{opt}(t) = \frac{N}{2}s^*(-t) \end{align}

对应题干中:h(t)=Ks(T0t)T0=0h(t)=Ks^*(T_0-t),T_0 = 0, 能得到N = 2. 该噪声的功率谱密度为1,该噪声为一个白噪声。

Conclusion

  1. 匹配滤波器的单位冲激响应是原信号的共轭反转信号
  2. 匹配滤波后的实部输出非常像Sinc Function
    原因:输出信号的幅度:

s(t)=rect(tT)ej2π(k2t2)h(t)=s(t)=rect(tT)ej2π(k2t2)s0(t)=s(t)h(t)=h(u)s(tu)du=rect(uT)ej2π(k2u2)rect(tuT)ej2π(k2(tu)2)du=rect(uT)rect(tuT)ejπk(t22tu)du=tT2T2ejπk(t22tu)du(0tT)=tT2T2ejπkt2e2jπktudu=ejπkt2tT2T2e2jπktudu=ejπkt2e2jπktu2jπkttT2T2=sinπk(Tt)tπkt(0tT)=sinπk(T+t)tπkt\begin{align} s(t)= rect(\frac{t}{T})e^{j2 \pi (\frac{k}{2}t^2)} \\ h(t)=s^*(-t)= rect(\frac{-t}{T})e^{-j2 \pi (\frac{k}{2}t^2)} \\ s_0(t) = s(t) * h(t) &= \int_{-\infty}^{\infty}h(u)s(t-u)du\\ &= \int_{-\infty}^{\infty}rect(\frac{-u}{T})e^{-j2 \pi (\frac{k}{2}u^2)}rect(\frac{t-u}{T})e^{j2 \pi (\frac{k}{2}(t-u)^2)}du\\ &= \int_{-\infty}^{\infty}rect(\frac{-u}{T})rect(\frac{t-u}{T})e^{j \pi k(t^2-2tu)}du\\ &= \int_{t-\frac{T}{2}}^{\frac{T}{2}}e^{j \pi k(t^2-2tu)}du\\ (0 \leq t \leq T) &= \int_{t-\frac{T}{2}}^{\frac{T}{2}}e^{j \pi kt^2}e^{-2j \pi ktu}du\\ &= e^{j \pi kt^2}\int_{t-\frac{T}{2}}^{\frac{T}{2}}e^{-2j \pi ktu}du\\ &= e^{j \pi kt^2}\frac{e^{-2j \pi ktu}}{-2j \pi kt} \Bigg|^{\frac{T}{2}}_{t-\frac{T}{2}} \\ &= \frac{sin \pi k(T-t)t}{\pi kt} \\ (0 \leq t \leq T) &= \frac{sin \pi k(T+t)t}{\pi kt} \end{align}

s0(t)=TsinπkT(1tT)tπkTtrect(t2T)=TSa(πkTt)rect(t2T)\begin{align} s_0(t) &= T\frac{sin \pi kT(1- \frac{|t|}{T})t}{\pi kTt}rect(\frac{t}{2T})\\ &= TSa(\pi kTt)rect(\frac{t}{2T}) \end{align}

tTt \leq T时,包络近似为辛格(sinc)函数。

  1. 输出幅度/功率在t=0t=0处有最大值(考虑延迟,则在t=T0t=T_0

Radar